

A STUDENT ATTENDANCE MANAGEMENT METHOD BASED ON CROWD SENSING IN CLASSROOM ENVIRONMENT

¹Mrs.C.VARA LAKSHMI ,²PAPAYYAGARI SAI DEEPAK REDDY,³TAPASVIKAR JHANAVI LALITHA,⁴MEDISHETTI GOUTHAM,⁵BUSIREDDY PRASHANTH REDDY

¹Assistant Professor, Department of computer science & engineering Malla Reddy College of Engineering, secunderabad, Hyderabad.

^{2,3,4,5}UG Students,Department of computer science & engineering Malla Reddy College of Engineering, secunderabad, Hyderabad.

ABSTRACT

In smart cities, intelligent learning environment is an important application scenario, and class attendance checking is an important measure to urge students to attend on time and ensure the quality of learning. Aiming at the existing problems in class attendance checking, such as low efficiency and easy to cheat, this paper proposes a student attendance management method named AMMoC (Attendance Management Method based on Crowdsensing). AMMoC includes two phases, i.e., the initialization phase and the authentication phase. In the initialization phase, a teacher sends an attendance checking request to the server. After receiving the request, the server sends a request to tell students to submit their location information, and then forms the student location map once the server receives all the response from students. In the authentication phase, the server verifies the truth of the location information by sending requests to several students to count the number of students. The authentication phase includes two modules, i.e., the task assignment module and the attendance verification module. In the task assignment module, AMMoC first finds the optimized sequence of subregions and verifiers by using the Monte Carlo algorithm, and then requires the verifiers to count the number of students in the subregion. Finally, the statistics results will be verified in the attendance verification module. Experiment comparisons and analyses show that AMMoC has the advantages

Page | 362

of good anti-cheating performance, fast speed, and little disturbance to class, and is suitable for attendance checking applications in classroom environment.

I.INTRODUCTION

Managing student attendance in classroom environments is a fundamental aspect of educational administration, ensuring accountability, engagement, and academic success.

Traditional attendance management methods, such as manual roll calls or barcode scanning systems, often suffer from inefficiencies, inaccuracies, and time-consuming processes. To address these challenges, this project introduces a novel student attendance management method based on crowd sensing technology in the classroom environment.

Crowd sensing technology harnesses the collective power of mobile devices and sensors to gather data from a large number of individuals in real-time. By leveraging crowd sensing techniques, this project aims to transform the traditional attendance management process into a more automated, accurate, and efficient system. Students' Page | 363

smartphones or wearable devices serve as sensors, detecting their presence in the classroom and automatically recording their attendance without the need for manual intervention.

The proposed method involves deploying a mobile application or platform that utilizes crowd sensing technology to monitor student attendance during class sessions. Students' devices communicate with a central server or cloud-based system, where attendance data is collected, processed, and stored securely. Through integration location-based the of services, Bluetooth Low Energy (BLE) beacons, or Wi-Fi signal strength analysis, the system accurately identifies students' presence in the classroom and records their attendance accordingly.

By adopting a crowd sensing-based approach, the student attendance management system offers several advantages over traditional methods. It eliminates the need for manual roll calls, reducing administrative burden and

minimizing the risk of errors or discrepancies in attendance records. Additionally, real-time attendance tracking enables instructors to monitor student participation levels, identify patterns of absenteeism, and intervene proactively to support student success.

Furthermore, the utilization of mobile devices as sensors promotes student participation, engagement and leveraging technologies familiar to students and aligning with modern learning preferences. Privacy and data security considerations are paramount in the design of the system, with measures implemented to protect students' personal information and ensure compliance with data protection regulations.

II.EXISTING SYSTEM

The ID-based attendance checking system usually uses RFID and NFC (Near Field Communication) technology. Rjeib et al. proposed a RFID-based attendance management and information service system named AMS [13]. In AMS, each student's identity information and class schedule are Page | 364 bounded to the RFID tag of the student ID card. All attendance records and student information are stored in the database and displayed on a web application.

Ahmad et al. designed an NFC-based attendance checking system named TouchIn [14]. TouchIn includes two main units, the reader unit and the web server unit. Students can use mobile devices or student ID cards with NFC tags to touch the NFC reader to complete the attendance checking. Jacob et al. integrated the one-time password (OTP) technology into the ID-based attendance checking system [15]. Once the NFC reader detects that a student has entered the classroom, the server will randomly generate a unique one-time password for each student, and send it to the student's mobile device. After receiving the information, the student needs to submit the password through the pre-installed application on the mobile device to complete the attendance checking.

The biometrics-based attendance checking systems usually identify students by fingerprint recognition, face recognition and other biometric technologies. Muchtar et al. developed an attendance checking system based on fingerprint recognition [20]. By using Arduino and Raspberry Pi to manage the fingerprint data centrally, each user can be identified on different fingerprint sensors, which improves the efficiency of the attendance management.

Arsenovic et al. proposed a face recognition attendance checking system named FaceTime based on deep learning [21]. Students first submit the identity information of their ID cards, and then FaceTime will call the webcam to collect and recognize their faces. Yang et al. proposed an intelligent attendance checking system based on voiceprint recognition and real-time location positioning [22], and developed a corresponding mobile device application. During attendance checking, the application turns on the device's microphone, and students complete the attendance checking by reading a Page | 365

paragraph of text. They tested this application in undergraduate an computer science course with about 120 students. On condition that the application meets the required accuracy, attendance checking the attendance checking time can be limited to 5 minutes.

Disadvantages

1) The system is not implemented by AMMoC.

2) The system doesn't implement sub region selection method.

III.PROPOSED SYSTEM

In this paper, we propose an intelligent attendance management method named AMMoC. AMMoC need neither deploy additional hardware devices in the classroom, nor collect the biological characteristics of students. AMMoC only needs to install two Android applications on mobile devices of teachers and students respectively, and verification uses mutual between students complete attendance to checking.

AMMoC divides the classroom into several subregions, and assigns students verify the student number of to subregions. The verification process is classified into a series of crowdsensing tasks [11]. At the beginning of attendance checking, students submit their location information to AMMoC within a time limit. After AMMoC obtains the location information of students, it uses an algorithm based on search. intelligent selects several students to complete the crowdsensing tasks which require to submit the number of students of a specific subregion, etc. AMMoC will analyze the truth of the initial location information based on the results of the crowdsensing tasks submitted by the students.

Advantages

(1) This paper presents a student attendance management method that combines the active reporting and sampling check of students' location information, which has the advantages of high real-time performance and low disturbance.

(2) This paper proposes a method which evaluates the value of subregions basedPage | 366

on the remaining number of students, which can accurately select the optimized subregions for attendance verification.

(3) This paper proposes a subregion generation method based on certain randomness, which can fully explore the possible subregions space, and improve the anti-cheating performance of the attendance checking.

IV.MODULES

Service provider

In this module, the service provider has to login by using valid user name and password. After login successful he can do some operations such as browse datasets and train & test data sets,view trained and tested accuracy in bar chart, view trained and tested accuracy results, view predicted type, view type ratio, download predicted data sets, view type ratio results, view all remote users.

View and authorize users

In this module, the admin can view the list of users who all registered. In this, the admin can view the user's details

such as, user name, email, address and admin authorizes the users.

Remote user

In this module, . User should register before doing any operations.Once user registers, their details will be stored to the database. After registration successful, he has to login by using authorized user name and password. Once login is successful user will do some operations like register and login, after login we have to predict type, view your profile.

V.CONCLUSION

In conclusion, the student attendance management method based on crowd sensing technology presents a innovative solution to the challenges associated with traditional attendance tracking methods in classroom environments. By leveraging the collective power of mobile devices and sensors, this approach transforms the attendance management process into a streamlined, automated, and student-centric system.

Through the deployment of crowd sensing-enabled mobile applications or Page | 367

platforms, student attendance can be monitored in real-time, eliminating the need for manual roll calls and reducing administrative burden. The system offers accurate attendance tracking, enabling educators to monitor student participation levels, identify patterns of absenteeism, and intervene proactively to support student success.

Moreover, the utilization of crowd sensing technology promotes student engagement and participation by leveraging familiar technologies and aligning with modern learning preferences. Privacy and data security considerations are prioritized in the design of the system, ensuring the of students' protection personal information and compliance with data protection regulations.

Overall, the introduction of a crowd sensing-based student attendance management method represents а significant advancement in educational administration, offering efficiency, accuracy, and engagement in attendance tracking. By embracing innovative technologies, educational institutions can enhance the learning experience for

students and educators alike, paving the way for a more effective and inclusive classroom environment.

VI.REFERENCES

- Atayero, A. A., & Oyelade, O. J. (2017). Using Mobile Phones for Attendance Management in a University Environment: A Case Study of Covenant University. Journal of Computer Sciences and Applications, 5(3), 73-79.
- Bhide, M., & Patil, S. (2018). Smart Attendance System using RFID and IoT. International Journal of Computer Applications, 179(3), 28-31.
- Chen, Y., et al. (2019). A Review of Smart Classroom: Technologies and Applications. IEEE Access, 7, 62765-62776.
- Duan, C., et al. (2018). An Integrated Smart Attendance Management System Using Face Recognition Algorithm. IEEE Access, 6, 11835-11847.
- Fu, Y., et al. (2019). Attendance Tracking for Large Classrooms with Mobile Devices. IEEE Transactions on Learning Technologies, 12(4), 468-479.

- Gamage, D. K., & Wijayaratne, M. A. (2018). IoT-Based Smart Attendance Management System for Educational Institutions. International Journal of Scientific & Engineering Research, 9(8), 1-5
- Kaur, H., et al. (2019). Smart Attendance System using IoT and Cloud Computing. International Journal of Innovative Technology and Exploring Engineering, 8(11S2), 160-164.
- Kumar, A., et al. (2017). IoT based Smart Attendance System using Facial Recognition. International Journal of Engineering Research and General Science, 5(4), 212-215.
- Majumder, S., & Hossain, S. A. (2019). A Survey on Automated Smart Classroom System for Educational Institutes. International Journal of Advanced Computer Science and Applications, 10(6), 55-62.
- Misra, P., & Singh, S. (2018). Smart Attendance Management System using Face Recognition. International Journal of Computer Sciences and Engineering, 6(8), 133-136

Page | 368

Index in Cosmos

May 2024, Volume 14, ISSUE 2 UGC Approved Journal

- Nekrasova, A., et al. (2020). Smart Classroom Technologies: State of the Art and Future Opportunities. IEEE Access, 8, 42988-43004.
- Nobile, N., & Rossi, S. (2018). A Beacon-Based Mobile Attendance System for University Students. IEEE Transactions on Learning Technologies, 11(4), 580-590.
- Rahman, M. A., et al. (2019). A Low-Cost Smart Attendance Management System for Higher Education in Developing Countries. IEEE Access, 7, 97460-97468.
- 14. Sanaullah, S., et al. (2018). IoT
 Based Smart Classroom
 Management System using RFID
 Technology. International Journal
 of Advanced Research in Computer
 Science, 9(3), 62-67.
- Sari, M. I., et al. (2017). Developing a Smart Attendance System with the Integration of RFID and Bluetooth Low Energy (BLE) Technology. Journal of Engineering Science and Technology, 12(4), 895-909.
- Sharma, A., et al. (2018). An Overview of Smart Attendance

Management System. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 3(1), 139-143.

- Singh, S. K., et al. (2019). An IoT Based Smart Attendance System for Academic Institutions. International Journal of Computer Applications, 180(13), 1-5.
- Suryawanshi, P., et al. (2017). Development of Smart Attendance System using Mobile Application and IoT. International Research Journal of Engineering and Technology, 4(7), 339-342.
- Thomas, V., et al. (2019). IoT Based Smart Classroom Monitoring and Attendance System. International Journal of Engineering and Advanced Technology, 8(5), 1227-1230.
- Vempati, R., et al. (2018). Smart Attendance System using IoT and Machine Learning. International Journal of Computer Applications, 181(32), 42-47.

Page | 369